Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Study of stimulated emission from InGaN/GaN multiple quantum well structures

Identifieur interne : 001946 ( Chine/Analysis ); précédent : 001945; suivant : 001947

Study of stimulated emission from InGaN/GaN multiple quantum well structures

Auteurs : RBID : Pascal:05-0097626

Descripteurs français

English descriptors

Abstract

A stimulated emission under high optical pumping was investigated on InGaN/GaN multiple quantum well (MQW) structures as a function of well thickness at room temperature. With increasing quantum well thickness, the threshold of optical pumping decreases monotonically, similar to that conventionally observed in the AlGaAs/GaAs system. The intensity of the spontaneous emission under low excitation first increases, but then dramatically decreases as the well thickness increases from 1.4 to 3.9 nm. This is generally accepted to be due to the piezoelectric field-induced quantum-confined Stark effect (QCSE). In contrast, the emission mechanism in the process of stimulated emission is not dominated by the QCSE, since the stimulated emission is normally observed under high excitation power where the piezoelectric field is completely screened. Consequently, InGaN/GaN MQW behaves in the same manner as the classical AlGaAs/GaAs system. In this case, increasing well thickness can improve the confinement of wave function of carriers inside the quantum well, resulting in the decrease in threshold with increasing well thickness. In reality, an InGaN/GaN-based laser diode (LD) operates under high injection current that is similar to high optical pumping, while a light emitting diode (LED) works under low injection current that is similar to low optical pumping. This difference must be especially taken into account in designing InGaN/GaN LD and LED.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:05-0097626

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Study of stimulated emission from InGaN/GaN multiple quantum well structures</title>
<author>
<name sortKey="Wang, T" uniqKey="Wang T">T. Wang</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electronic and Electrical Engineering, EPSRC National Centre for III-V Technologies, University of Sheffield, Mappin Street</s1>
<s2>Sheffield S1 3JD</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Sheffield S1 3JD</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Institute of Laser and Optoelectronics, Tianjin University</s1>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Institute of Laser and Optoelectronics, Tianjin University</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Parbrook, P J" uniqKey="Parbrook P">P. J. Parbrook</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electronic and Electrical Engineering, EPSRC National Centre for III-V Technologies, University of Sheffield, Mappin Street</s1>
<s2>Sheffield S1 3JD</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Sheffield S1 3JD</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Whitehead, M A" uniqKey="Whitehead M">M. A. Whitehead</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electronic and Electrical Engineering, EPSRC National Centre for III-V Technologies, University of Sheffield, Mappin Street</s1>
<s2>Sheffield S1 3JD</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Sheffield S1 3JD</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fan, W H" uniqKey="Fan W">W. H. Fan</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Physics and Astronomy, University of Sheffield</s1>
<s2>Sheffield S3 7RH</s2>
<s3>GBR</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Sheffield S3 7RH</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fox, A M" uniqKey="Fox A">A. M. Fox</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Physics and Astronomy, University of Sheffield</s1>
<s2>Sheffield S3 7RH</s2>
<s3>GBR</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Sheffield S3 7RH</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">05-0097626</idno>
<date when="2004">2004</date>
<idno type="stanalyst">PASCAL 05-0097626 INIST</idno>
<idno type="RBID">Pascal:05-0097626</idno>
<idno type="wicri:Area/Main/Corpus">00A770</idno>
<idno type="wicri:Area/Main/Repository">00AB90</idno>
<idno type="wicri:Area/Chine/Extraction">001946</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0022-0248</idno>
<title level="j" type="abbreviated">J. cryst. growth</title>
<title level="j" type="main">Journal of crystal growth</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Confinement</term>
<term>Emission spectra</term>
<term>Experimental study</term>
<term>Gallium nitrides</term>
<term>III-V semiconductors</term>
<term>Indium nitrides</term>
<term>Light emitting diodes</term>
<term>Multiple quantum well</term>
<term>Nanostructured materials</term>
<term>Optical pumping</term>
<term>Photoluminescence</term>
<term>Piezoelectricity</term>
<term>Size effect</term>
<term>Stark effect</term>
<term>Stimulated emission</term>
<term>Ternary compounds</term>
<term>Thickness</term>
<term>XRD</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Etude expérimentale</term>
<term>Emission stimulée</term>
<term>Epaisseur</term>
<term>Effet dimensionnel</term>
<term>Effet Stark</term>
<term>Confinement</term>
<term>Pompage optique</term>
<term>Piézoélectricité</term>
<term>Diffraction RX</term>
<term>Spectre émission</term>
<term>Photoluminescence</term>
<term>Indium nitrure</term>
<term>Gallium nitrure</term>
<term>Composé ternaire</term>
<term>Semiconducteur III-V</term>
<term>Nanomatériau</term>
<term>Puits quantique multiple</term>
<term>Diode électroluminescente</term>
<term>InGaN</term>
<term>Ga In N</term>
<term>GaN</term>
<term>Ga N</term>
<term>8107S</term>
<term>7845</term>
<term>Substrat Al2O3</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A stimulated emission under high optical pumping was investigated on InGaN/GaN multiple quantum well (MQW) structures as a function of well thickness at room temperature. With increasing quantum well thickness, the threshold of optical pumping decreases monotonically, similar to that conventionally observed in the AlGaAs/GaAs system. The intensity of the spontaneous emission under low excitation first increases, but then dramatically decreases as the well thickness increases from 1.4 to 3.9 nm. This is generally accepted to be due to the piezoelectric field-induced quantum-confined Stark effect (QCSE). In contrast, the emission mechanism in the process of stimulated emission is not dominated by the QCSE, since the stimulated emission is normally observed under high excitation power where the piezoelectric field is completely screened. Consequently, InGaN/GaN MQW behaves in the same manner as the classical AlGaAs/GaAs system. In this case, increasing well thickness can improve the confinement of wave function of carriers inside the quantum well, resulting in the decrease in threshold with increasing well thickness. In reality, an InGaN/GaN-based laser diode (LD) operates under high injection current that is similar to high optical pumping, while a light emitting diode (LED) works under low injection current that is similar to low optical pumping. This difference must be especially taken into account in designing InGaN/GaN LD and LED.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0022-0248</s0>
</fA01>
<fA02 i1="01">
<s0>JCRGAE</s0>
</fA02>
<fA03 i2="1">
<s0>J. cryst. growth</s0>
</fA03>
<fA05>
<s2>273</s2>
</fA05>
<fA06>
<s2>1-2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Study of stimulated emission from InGaN/GaN multiple quantum well structures</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>WANG (T.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>PARBROOK (P. J.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>WHITEHEAD (M. A.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>FAN (W. H.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>FOX (A. M.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Electronic and Electrical Engineering, EPSRC National Centre for III-V Technologies, University of Sheffield, Mappin Street</s1>
<s2>Sheffield S1 3JD</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Institute of Laser and Optoelectronics, Tianjin University</s1>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Department of Physics and Astronomy, University of Sheffield</s1>
<s2>Sheffield S3 7RH</s2>
<s3>GBR</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>48-53</s1>
</fA20>
<fA21>
<s1>2004</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13507</s2>
<s5>354000122827200050</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2005 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>27 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>05-0097626</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of crystal growth</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>A stimulated emission under high optical pumping was investigated on InGaN/GaN multiple quantum well (MQW) structures as a function of well thickness at room temperature. With increasing quantum well thickness, the threshold of optical pumping decreases monotonically, similar to that conventionally observed in the AlGaAs/GaAs system. The intensity of the spontaneous emission under low excitation first increases, but then dramatically decreases as the well thickness increases from 1.4 to 3.9 nm. This is generally accepted to be due to the piezoelectric field-induced quantum-confined Stark effect (QCSE). In contrast, the emission mechanism in the process of stimulated emission is not dominated by the QCSE, since the stimulated emission is normally observed under high excitation power where the piezoelectric field is completely screened. Consequently, InGaN/GaN MQW behaves in the same manner as the classical AlGaAs/GaAs system. In this case, increasing well thickness can improve the confinement of wave function of carriers inside the quantum well, resulting in the decrease in threshold with increasing well thickness. In reality, an InGaN/GaN-based laser diode (LD) operates under high injection current that is similar to high optical pumping, while a light emitting diode (LED) works under low injection current that is similar to low optical pumping. This difference must be especially taken into account in designing InGaN/GaN LD and LED.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A07S</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70H45</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Experimental study</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Emission stimulée</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Stimulated emission</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Epaisseur</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Thickness</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Effet dimensionnel</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Size effect</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Effet Stark</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Stark effect</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Confinement</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Confinement</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Pompage optique</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Optical pumping</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Piézoélectricité</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Piezoelectricity</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Diffraction RX</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>XRD</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Spectre émission</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Emission spectra</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Photoluminescence</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Photoluminescence</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Indium nitrure</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Indium nitrides</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Gallium nitrure</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Gallium nitrides</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Composé ternaire</s0>
<s5>17</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Ternary compounds</s0>
<s5>17</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>18</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>18</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>19</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>19</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Puits quantique multiple</s0>
<s5>20</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Multiple quantum well</s0>
<s5>20</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Pozo cuántico múltiple</s0>
<s5>20</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Diode électroluminescente</s0>
<s5>21</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Light emitting diodes</s0>
<s5>21</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>InGaN</s0>
<s4>INC</s4>
<s5>52</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Ga In N</s0>
<s4>INC</s4>
<s5>53</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>GaN</s0>
<s4>INC</s4>
<s5>54</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Ga N</s0>
<s4>INC</s4>
<s5>55</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>8107S</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>56</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>7845</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>57</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>Substrat Al2O3</s0>
<s4>INC</s4>
<s5>92</s5>
</fC03>
<fC07 i1="01" i2="3" l="FRE">
<s0>Composé minéral</s0>
<s5>48</s5>
</fC07>
<fC07 i1="01" i2="3" l="ENG">
<s0>Inorganic compounds</s0>
<s5>48</s5>
</fC07>
<fN21>
<s1>066</s1>
</fN21>
<fN44 i1="01">
<s1>PSI</s1>
</fN44>
<fN82>
<s1>PSI</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Chine/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001946 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Chine/Analysis/biblio.hfd -nk 001946 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Chine
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:05-0097626
   |texte=   Study of stimulated emission from InGaN/GaN multiple quantum well structures
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024